Paquetes para aprendizaje automático en R

El pasado 6 de junio se publicaba en R-bloggers una entrada titulada What are the Best Machine Learning Packages in R? En ella el autor hacía una lista con los paquetes que él considera más importantes para machine learning en R (y que puede hacer que algunos opten por iniciarse por este software).

La lista incluye los paquetes:

  • mice: Multivariate Imputation by Chained Equations. Para completar los valores perdidos o NA de nuestra base de datos.
  • rpart: Recursive Partitioning and Regression Trees. Para realizar árboles de clasificación y regresión.
  • party: A Laboratory for Recursive Partytioning. También sirve para realizar modelos basados en árboles de decisión.
  • caret: Classification And REgression Training. Con este paquete se pretende tener un marco común para utilizar las demás técnicas de Machine learning.
  • randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. Para realizar bosques aleatorios.
  • nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. Para realizar redes neuronales.
  • e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Entre otros nos permite realizar modelos de máquinas de soporte de vectores, transformaciones de Fourier, etc.
  • kernlab: Kernel-Based Machine Learning Lab. Implementa algoritmos basados en métodos de Kernel.

En la entrada se puede ver más información y ejemplos de cada paquete.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

To create code blocks or other preformatted text, indent by four spaces:

    This will be displayed in a monospaced font. The first four 
    spaces will be stripped off, but all other whitespace
    will be preserved.
    
    Markdown is turned off in code blocks:
     [This is not a link](http://example.com)

To create not a block, but an inline code span, use backticks:

Here is some inline `code`.

For more help see http://daringfireball.net/projects/markdown/syntax