R supera a SAS en el uso escolar

Una buena forma de analizar el uso de los distintos paquetes de software estadístico es analizar su aparición en artículos escolares. Basándonos en ello, tenemos que durante los últimos 15 años SPSS ha sido el paquete más dominante, y sigue siendolo a finales de 2015, seguramente debido a su equilibrio entre potencia y facilidad de uso. La novedad está en que por primera vez, R se encuentra en el segundo puesto con más de la mitad de artículos, quedando SAS relegado a un tercer lugar.

Estos datos son útiles para analizar la cuota de mercado, pero si queremos ver cómo el uso de los paquetes está cambiando, lo ideal es analizar la tendencia de crecimiento en los dos últimos años para cada uno de los paquetes de análisis de datos. Podemos ver en rojo, aquellos paquetes “calientes” cuyo uso está creciendo, y en azul aquellos que se “están enfriando”.

Observamos que Python es aquel con mayor crecimiento. El segundo y tercer puesto es para los paquetes de código abierto KNIME y RapidMiner, respectivamente. R está en el cuarto lugar, y teniendo en cuenta su segundo lugar en cuota de mercado global, está en una posición envidiable. En el otro extremo de la escala están SPSS y SAS, ambos de los cuales redujeron su uso un 25% o más.

Si analizamos esta tendencia a largo plazo (de 1995 a 2015) observamos que SPSS tiene una clara ventaja, pero ahora se puede ver que su dominio alcanzó su punto máximo en 2008 y que su uso está en fuerte descenso. SAS nunca llegó a nivel de dominio de SPSS, y también alcanzó su punto máximo alrededor de 2008. Esto se equilibra ligeramente con el aumento en el uso del resto de software en general y de R en particular.

Quitando del gráfico las curvas de SAS y SPSS, podemos ver que el crecimiento en el uso de R es bastante rápido y se está alejando de la manada. Si las tendencias actuales continúan, R cruzará SPSS para convertirse en el software #1 para el uso de datos ciencia académica a finales de 2017.

Para dejar aún más claro este punto, repetimos el gráfico anterior aplicando escala logarítmica en el eje y. Esto reduce proporcionalmente los paquetes más populares, que nos permite ver más claro que el uso de R ha pasado al de SAS, y que el uso de Stata se está cerca de hacerlo.

Léase la noticia completa en https://www.r-bloggers.com/r-passes-sas-in-scholarly-use-finally/

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

To create code blocks or other preformatted text, indent by four spaces:

    This will be displayed in a monospaced font. The first four 
    spaces will be stripped off, but all other whitespace
    will be preserved.
    
    Markdown is turned off in code blocks:
     [This is not a link](http://example.com)

To create not a block, but an inline code span, use backticks:

Here is some inline `code`.

For more help see http://daringfireball.net/projects/markdown/syntax